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Outline

• Part I:
Microscopic models for individual 2-level fluctuators 
inside Josephson junctions (flux qubits ala Martinis):
– Josephson-type (couples to cos φ)
– Dipolar (couples to electric field, dφ/dt)

• Part II:
Statistical influence of many weak charge fluctuators on 
Cooper pair boxes (charge qubits ala Nakamura):
– Nearly coherent 2-level fluctuators, examples
– Connection between low and high frequency noises
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TLS Spectroscopy
Simmonds et al, PRL 2004
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Both could explain expt.
How to distinguish?



Why hard to distinguish?
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Testing the mechanism
(running phase regime)
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⇒Rabi oscillations

(see also V. Kozub JETP 84) ω

SV(ω) – voltage power spectr.

or



„Hamiltonian“ of resistor

Modified Josephson term

For simplicity 

First mechanism: the 
Hamiltonian



Rotating frame



ω

Rotating frame

SV(ω) :
voltage power spectr.



ω

SV(ω) – voltage power spectr.

Results



Second (dipolar) mechanism



Predictions
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Proposal for TLS identification

• Two possible mechanisms: Josephson and dipolar (φ)
• Measure JJ in the running phase regime at voltage 

corresponding to TLS splitting:
– Find peak in voltage power spectrum at the Rabi frequency 

(corresponding to the qubit-TLS coupling)
– Measure the signal to noise at Rabi frequency as a function of 

parameters ( e.g. R, C).
– Two mechanisms, while indistinguishable in the quantum (qubit) 

regime, in the running phase have different SNR dependence on 
parameters (see Martin, Bulaevskii, Shnirman, Phys. Rev. Lett. 95, 127002 
(2005) )



Part II
Statistical influence of many weak charge fluctuators on 

Cooper pair boxes (charge qubits ala Nakamura)
– Nearly coherent 2-level fluctuators, examples
– Connection between low and high frequency charge noises
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Low frequency 1/f noise 
crosses f quantum noise at 
ηωc ≈ kBT

Astafiev et al. (PRL 04)
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same strength for low- and high-frequency noisea

Experimental data of Astafiev et al. (NEC)

Source of noise:
Charge fluctuations



• Fluctuations X(t) probed by qubit 

• Source of X(t) is an ensemble of two-level systems (TLS)

Our Model

• each TLS is coupled (weakly) to dissipative environment  Hdiss.j

⇒ weak relaxation and decoherence 1, 2,diss, , jj jjH E→ Γ Γ =

qubit
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absorption

emission

random telegraph noise

Correlation function

Noise of a single TLS

In eigenbasis

ω ω ω



Spectrum of noise felt by qubit

High frequencies:

Low frequencies:

depends on distribution                           of TLS-parameters



0.1 1 10
0.1

1

10

S

f

1/f

1/f noise as sum of many telegraph noises 
(Dutta-Horn model)

We want



explains observed spectrum SX(ω) 

exponential dependence on barrier height
for linear ω-dependence

overall factor
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„Andreev fluctuators“ (Faoro et al. cond-mat 2004) might have
this distribution of parameters 



Microscopic models

Faoro, Bergli, Altshuler, Galperin (2004)

Models 2 and 3



Microscopic models

Paladino, Faoro, Falci, Fazio (2002) + ....
Galperin, Altshuler, Shantsev (2003)
Faoro, Bergli, Altshuler, Galperin (2004)
Grishin, Yurkevich, Lerner (2004)
de Sousa, Whaley, Wilhelm, von Delft (2005) 



Conclusions, Part II

• Qubit used as spectrum analyzer of noise of environment
Astafiev et al. (NEC), Martinis et al. (NIST), Vion et al. (Saclay),
Schoelkopf et al. (Yale), Kouwenhoven et al. (Delft),….

• High- and low-frequency noise derive from the same ensemble of ‘coherent’ TLS

• Plausible distribution of parameters produces:

- Ohmic (f) high-frequency noise responsible for relaxation

- Low-frequency (1/f) noise scaling as T2 responsible for decoherence
- both governed by same parameters
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Conclusions

• Two possible mechanisms: Josephson and dipolar (φ)
I. Martin, L. Bulaevskii, and A. Shnirman, “Tunneling Spectroscopy of Two-level Systems 
Inside Josephson Junction,” Phys. Rev. Lett. 95, 127002 (2005)

• Connection between high- and low-frequency noises 
from an ensemble of almost coherent 2-level fluctuators 
Alexander Shnirman, Gerd Schön, Ivar Martin, Yuriy Makhlin “Low- and high-frequency 
noise from coherent two-level systems,” Phys. Rev. Lett. 94, 127002 (2005)
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